The future of NOAA Weather Radio backhaul? Cellular

The National Weather Service is changing how they get the NOAA Weather Radio audio to their transmitter sites. Douglas Fehr/Unsplash

The National Weather Service (NWS)’ NOAA Weather Radio gives you life-saving weather alerts from blizzard to tornado, flash flood, and severe thunderstorm warnings. But, do you know how that audio and those alerts reliably gets to your weather radio?

It starts at your local National Weather Service office. From there, it traditionally goes from copper phone lines to fiber at the local phone switching center, then back to copper in the closest switching center to the transmitter, and then to the transmitter itself, where the dual copper phone line gives the audio to the transmitter that you hear on your radios.

But, this is now 2021. Many broadcast towers just have fiber to them. And many more don’t even have that: the phone and Internet on the cell tower are received, or “backhauled”, via a microwave antenna…and that microwaved signal is received from a phone switching center many miles away.

So what happens when the National Weather Service needs to move their NOAA Weather Radio station to a new tower that has no copper connections? They’ve been asking that question to reduce costs and increase reliability. We now know the answer to that question.

On May 28, 2021, NOAA Weather Radio station WXJ-76 in Champaign, Illinois became one of the first (there are a few others that beat them) NOAA Weather Radio stations to receive the broadcast using cell phone technology. Here’s what the National Weather Service (NWS) says about it:

“The broadcast originates at the NWS office in Lincoln, Illinois. The signal is sent from the NWS Lincoln office through cell towers to reception equipment at the tower site. WXJ-76 is one of the first NOAA Weather Radio sites in the country to use cellular phone service to relay broadcast signals (most weather radios rely on landline phone service).”

But, you might protest, won’t this affect reliability? The answer is that it shouldn’t. The cellular receive antenna for WXJ-76 is far better than on the best smartphone you can buy. If one tower goes down, it can pick up the signal from several other towers. Storm chasers know that with a signal booster, cellular signals in west Texas are known to go out over 40 miles! With an external antenna, a 20 mile range is doable. Is overloading a concern? Even if a tower becomes overloaded, prioritized traffic can still get through, even when, for consumers, they may be out of luck. I was in Galena, IL on a Memorial Day weekend, and I had *zero* bars of coverage. Oh, my provider has multiple cell towers there; they were just overloaded. But priority traffic can and will still get through.

Furthermore, in the next 3 years, 5G will be everywhere. As it is, the NOAA cellular broadcast is mostly just going over their provider’s network connection. And, with 5G, there is no “voice” channel on the cell towers, just the data/Internet channel. That’s it. With 5G, the cell towers become glorified 5-10 mile radius Wi-Fi hotspots (larger range with an external antenna, as mentioned above). And since copper phone lines are being abandoned, and with 5G being able to handle a lot more capacity, the future for data transmission to remote towers is via microwave antennas on the tower, sending and receiving the Internet “signal”. And, that’s happening in many cases already, right now. Do you see a big circular dish (or more than one) on a cell tower? That tower is getting the 4G voice and Internet and, where the equipment has been installed, lower-end 5G signal via that microwave antenna.

Adding to the changeover to cellular: analog landline/Internet and low-end fiber connection prices (think DSL) are going through the roof for commercial customers this year, and that is intentional so that users are forced to switch to a much more modern and faster technology….cellular! An FM radio station with a tower just southeast of Kirkland, IL out in the middle of a cornfield just switched to cellular after their DSL Internet costs to get the audio to their transmitter site more than tripled in one month. The station sounds better than ever on cellular, and the downtime has been zero. They use two cellular providers for redundancy, and they never have had issues since the switchover.

Welcome to the future of NOAA Weather Radio, in getting the audio to the transmitter sites (known as a “backhaul” feed, or how you get the signal to the transmitter). By being available to nearly every tower, the Weather Service now has more options if a tower becomes abandoned, unusable, or is no longer wanted by the hosting party. And look for improved audio clarity and fidelity, along with high reliability. The future looks (and sounds) good for NOAA Weather Radio!

No Comments Yet

Leave a Reply

Your email address will not be published. Required fields are marked *